
  Abstract — A new method for the design of 2-D (Two-
Dimensional) notch filters is proposed. We discuss the 
advantages of our methods in comparison with previously 
published methods in the 2-D (Two-Dimensional) Systems 
literature. An appropriate transformation is considered. 
Numerical examples illustrate the validity and the efficiency of 
the method. 
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I. INTRODUCTION 
daptive Notch filters are adaptive band-stop filters 
with extremely narrow stop band. Adaptive 
techniques are characterized by flexibility and 

accuracy. Among the processing operations, linear 
filtering is probably the most common and important. It is 
adaptive if its parameters, i.e. the coefficients are varied 
according to a specified criterion as new information 
becomes available, [11]. Adaptive Notch filters are used 
in live sound reproduction, in instrument amplifiers 
design, in electrocardiogram (ECG) signal processing etc.  
So, for every case in signal processing and 
communications that an elimination of an  undesirable 
frequency is necessary, an appropriate Notch Filter is 
necessary in order to cut-off this unwanted frequency.  For 
example in ECG signal processing there is a need to 
eliminate the power line noise as it is added in the 
bandwidth of the ECG signal. In the one-dimensional (1-
D) case, several methods for the design and performance 
analysis of IIR and FIR notch filters have been developed 
[1]÷[3].  In this paper, we use the results of [3] and an 
attempt to extend them in 2-D case via appropriate 
transformations is presented. On the other hand, the 
adaptation here is achieved by using a 2-D adaptation law. 
This paper is organized as follows: Section II presents
 First-Order 2-D IIR Notch Filters design together with 
a numerical example. In Section III, the design of a family 
of Second-Order 2-D IIR Notch Filters is presented. Some 
remarks can be found in IV and finally there is a 
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Conclusion. The adaptation law is an LMS based 
algorithm and is given in Section IV.  

II.  THE PROPOSED METHOD FOR FIRST-ORDER  IIR 2-D 
NOTCH FILTERS WITHOUT ADAPTATION 
Consider the 1-D transfer function 
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with 1 j Tz e ω− =  π ω π− ≤ ≤ ,  T is the Sampling Period,   
and 0 1r<< <  . For 0 1r<< <  this 1-D transfer function 
is stable [3]. 
 

 
                                    Fig. 1.a 
 
K is a scaling factor such that the maximum gain of the 
filter to be equal to 1.  With the pole radius almost equal 
to 1, the pole almost cancels the effect of the zero except 
in the case z=1. So, this filter is an all-pass filter that 
rejects the frequency of 0ω =  (e.g. DC frequency).  The 
magnitude response is illustrated in Fig.1.a in the case of  

0.9r = , ( T =1 without loss of generality). 
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                                    Fig. 1.b 
 

The Group Delay ( )ArgH jωτ
ω

∂
= −

∂
 is depicted in Fig. 

1.b and shows almost linear behavior in a big part of the 
frequency domain. The Notch filter  of (1) is presented in 
[3]. In this section, we extend it to 2-D case as follows: 
    In this paper, we propose 2-D filters, based on the 
results of [3] by applying appropriate transformations. 
So, for the first-order notch filter of (1) considering the 
transformation 
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with 1 11
1

j Tz e ω− =  1π ω π− ≤ ≤ ,  2 21
2

j Tz e ω− = , 2π ω π− ≤ ≤  

1 2,T T  are the sampling periods to horizontal and vertical 
direction whereas:  0 1r<< <  
 

 
Fig. 2.a 

 

 
Transformation (2) is remarkable because the Equation 

1 1
1 22 ( ) 0z z− −− + =  has the unique solution 1 1

1 21, 1z z− −= =    

since 1 1 2 21 1
1 2,j T j Tz e z eω ω− −= =  and can be easily extended to 

a family of transformations as follows. Introducing  
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  with 1 2,λ λ   real numbers or simply 
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1 2(1 )z z zλ λ− − −= + −   with 0 1λ< <  
one obtains 
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with 1 11

1
j Tz e ω− =  1π ω π− ≤ ≤ ,  2 21

2
j Tz e ω− = , 2π ω π− ≤ ≤  

( 0 1r<< < ) 
The  1r <  condition guarantees the 1-D and 2-D filter 
stability in all the above cases. 
 
Numerical Example 1: 
Consider without loss of generality 1 2,T T  equal to 1. Then, 

for 0.9r = and 1
2

λ =  in (3), one finds   1.05260K = , 

the magnitude response is depicted in Fig.2.a, 
while the Group Delays 
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are depicted in Fig.2.b and Fig.2.c. 
 

 
Fig.2.b 
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                                                Fig.2.c 
 
It is apparent that the family of the filters of (3) eliminates 
the 2-D frequency 1 2( , ) (0,0)ω ω = . Using this First-Order 
2-D Notch filter, the only frequency that can be eliminated 
is 1 2( , ) (0,0)ω ω = . If elimination of another 2-D 
frequency 1 2 10 20( , ) ( , ) (0,0)ω ω ω ω= ≠  is necessary, a 
second-order 2-D IIR notch filter must be used. As we 
prove in Section IV the 2-D first-order Notch filter is also 
Stable for 0 1r<< < . 
 
 

III. THE PROPOSED METHOD FOR SECOND -ORDER  IIR 
2-D NOTCH FILTERS WITHOUT ADAPTATION 
 
In this session, we extend (3) as follows in order to create 
a filter for rejection 1 2 10 20( , ) ( , )ω ω ω ω=  
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with 0 1λ< < , 0 1r<< <  and K is a scaling factor such 
that the maximum gain of the filter to be equal to 1. For 
0 1r<< <  this 1-D transfer function is stable [3].  Eq. (4) 
can be written also as 
 

( ) ( )
( )

1 1
1 21 1

1 2 1 1
1 2

,
,

,

A z z
H z z K

B z z

− −
− −

− −
=  

where 
( )1 1

1 2,A z z− − = 2 2
10 1 20 2(1 ) 2 (1 )cos( )T Tλ λ λ λ ω ω+ − + − −  

1 1 1 1 2
1 2 10 1 20 2 1 22( (1 ) )( cos (1 )cos ) ( (1 ) )z z T T z zλ λ λ ω λ ω λ λ− − − −− + − + − + + −

 
and 

( )1 1
1 2,B z z− − = 2 2

10 1 20 2(1 ) 2 (1 )cos( )T Tλ λ λ λ ω ω+ − + − −  
1 1 2 1 1 2

1 2 10 1 20 2 1 22 ( (1 ) )( cos (1 )cos ) ( (1 ) )r z z T T r z zλ λ λ ω λ ω λ λ− − − −− + − + − + + −
 

 
 

     Let’s examine for what ( )1 1
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Because for the frequency response 1 1
1 21, 1z z− −= = , we 

have to examine the frequencies 1 2( , )ω ω  for which 
10 1 20 21 1 2 2(1 ) (1 ) 0j T j Tj T j Te e e eω ωω ωλ λ λ λ+ − − − − = or 

10 1 20 21 1 2 2(1 ) (1 ) 0j T j Tj T j Te e e eω ωω ωλ λ λ λ− −+ − − − − =  
 

Using now:  1c λ
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10 1 20 21 1 2 2( ) 0j T j Tj T j Te ce e ceω ωω ω+ − − =                  (5.1) 

10 1 20 21 1 2 2( ) 0j T j Tj T j Te ce e ceω ωω ω − −+ − − =                  (5.2) 
 

 
 
We examine two cases 

a) 1c = , that means 1
2

λ =   and 

b) 1c ≠ , that means 1
2

λ ≠    

 
a) The first case yields the two equations: 
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From (6.1) one obtains the notch frequencies 

1 10 2 20,ω ω ω ω= =  
and the symmetric solution 

2 1
1 20 2 10

1 2

,
T T
T T

ω ω ω ω= =  

while from (6.2) two other couple of notch frequencies, 
i.e. 1 10 2 20,ω ω ω ω= − = −  
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are obtained. 
 
 
b) The second case yields also  two equations: 
 

10 1 20 21 1 2 2 0j T j Tj T j Te ce e ceω ωω ω+ − − =                  (7.1) 
10 1 20 21 1 2 2 0j T j Tj T j Te ce e ceω ωω ω+ − − =                  (7.2) 

with 1c ≠ . 
 
So, from (7.1) one obtains the notch frequencies 

1 10 2 20,ω ω ω ω= = , and from (7.2) the notch frequencies 

1 10 2 20,ω ω ω ω= − = −  
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Evidently, as 2-D IIR filter we can use only the case b) 
since the elimination of the “symmetric frequencies” 
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ω ω ω ω= = ) is not required. 

 
Therefore our 2-D IIR Notch Filter is given by (4) that 
can be also written as 
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with 0 1r<< < 0 1λ< < , 0.5λ ≠  and K is a scaling 
factor such that the maximum gain of the filter to be equal 
to 1.  
 

Using 1c λ
λ
−

=  now, a further simplification of the 

second-order 2-D IIR Notch Filter transfer function is  
 
 

 
Numerical Example 2: 
Consider the 2-D IIR Notch Filter of (8). Suppose that we 

want the cancellation of 10 20,
2 4
π πω ω= =  (and of course 

the symmetric 10 20,
2 4
π πω ω= − = − ). One can choose for 

example c = 2, 0.9r = . Consider also without loss of 
generality 1 2,T T  = 1. Then 
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Hence, the magnitude response is depicted in Fig.3.a, 
while the Group Delays 
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are depicted in Fig.3.b and Fig.3.c 
 
 
 

 
                                                     Fig.3.a 

 
                                                     Fig.3.b 

 

 
                                                     Fig.3.c 
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where 1c ≠  
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As we prove in the next Section, our 2-D second-order 
Notch filter is also Stable for 0 1r<< < . 

 

REMARKS  
A first remark is that 2-D filters with several notch 
frequencies can be easily implemented by cascade design, 
while by using the new transformations  
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Pz z−− =  and 21
2 2

Pz z−− = where 1 2,P P  are positive 
integers, except the notch frequencies 

1 10 2 20,ω ω ω ω= ± = ±  
the following notch frequencies are obtained 

     1 2
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1 2

,
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1 11, 2,...,k P=  and 2 21, 2,...,k P=  
Therefore periodic 2-D notch filters can easily 
implemented. 

IV. ADAPTIVE 2-D NOTCH FILTERS 
The parameters in the aforementioned filters can be 
estimated from the input signal by an LMS adaptation 
Law. Suppose that our 2-D filter has the parameters 

ia with i=1,2,… for example 1 10 ,a ω= 2 20a ω= for the 
second order 2-D filter. 
Then, a gradient LMS adaptation algorithm is 
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where the parameter m declares time. 
Taking into account that  
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Therefore the adaptation LMS law can be easily 
formulated in each case. 

V. CONCLUSION 
A new efficient and elegant technique for adaptive  2-D 
Notch Filter Design is investigated in this paper. Some 
other studies of the author for the stability of m-D systems 
can be found in [4] ÷[10]. Work is in progress by the 
author towards of statement new m-D design techniques 
better and more effective than the McClellan 
Transformations.  
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